
DEEP LEARNING

Supervised by:

Pr. Belcaid Anass

Machine learning – SVM 01

Multiclass Support Vector
Machine loss

Prepared by: KINDA Abdoul Latif Date: 10/09/2024

MACHINE LEARNING – SVM 02

Of Multiple Support Vector SOFTMAX vs SVM
INTRODUCTION REGULARISATION SOFTMAX

01 02 03

TABLE OF CONTENTS

MACHINE LEARNING – SVM 03

INTRODUCTION

01
Of SVM

MACHINE LEARNING – SVM 04

In this section, we will introduce the Multiclass Support Vector Machine (SVM) loss, a
commonly used function in machine learning for classification tasks. The idea behind the

SVM loss is to ensure that the classifier assigns a higher score to the correct class than to
any incorrect classes, with a specified margin, denoted as Δ (delta). This margin is designed
to encourage the classifier to clearly separate correct classifications from incorrect ones.

INTRODUCTION

MACHINE LEARNING – SVM 05

To better understand this, we can anthropomorphize the concept: the SVM "wants" the score
for the correct class to be higher by at least Δ than the scores for all other incorrect classes.

Achieving this goal minimizes the loss, which leads to better classification performance.

MACHINE LEARNING – SVM 06

For each data point xi (the pixels of the i-th image) and its corresponding correct class
label yi the SVM computes a score vector s, which is the result of the score function f(xi,W).
This score vector s contains a score sj for each class, with

sj=f(xi,W)j
where j refers to the j-th class.

The SVM loss is structured so that, for each image, the score for the correct class should
be higher than the scores for the other classes by at least a fixed margin Δ. This forms the
basis for the Multiclass SVM loss, which encourages the model to create a large margin
between the correct and incorrect classifications.

MACHINE LEARNING – SVM 07

FORMULE DEFINITION

Li = σ𝒋≠𝒚𝒊𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + ∆)

With linear score functions (f(xi, W) = Wxi) so we can also rewrite the loss function in this
equivalent form:

MACHINE LEARNING – SVM 08

Loss functions:
Linear scores functions

Li = σ𝒋≠𝒚𝒊𝒎𝒂𝒙(𝟎, 𝑾𝒋𝑻𝒙𝒊 −𝑾𝒚𝒊𝑻𝒙𝒊 + ∆)
Where wj is the j-th row of W reshaped as colum

MACHINE LEARNING – SVM 09

Hinge Loss:

max(0, -) function is also called the hinge loss.
However you could also see the use of the squared hinge loss SVM (or L2-SVM) which is:
max(0, -)2 that penalizes violated margins more strongly (quadratically instead of
linearly). The unsquared version is more standard, but in some datasets the squared hinge
loss can work better. This can be determined during cross-validation.

MACHINE LEARNING – SVM 10

The Multiclass Support Vector Machine "wants" the score of the correct class to be higher
than all other scores by at least a margin of delta. If any class has a score inside the red
region (or higher), then there will be accumulated loss. Otherwise the loss will be zero. Our
objective will be to find the weights that will simultaneously satisfy this constraint for all
examples in the training data and give a total loss that is as low as possible.

MACHINE LEARNING – SVM 11

REGULARIZATION

02
Of SVM

MACHINE LEARNING – SVM 12

There is one bug with the loss function we presented above. Suppose that we have a dataset
and a set of parameters W that correctly classify every example (i.e. all scores are so that all
the
margins are met, and Li=0 ∀i).
The issue is that this set of W is not necessarily unique:
there might be many similar W that correctly classify the examples. One easy way to see this is
that if some parameters W correctly classify all examples (so loss is zero for each example),
then any multiple of these parameters λW where λ>1 will also give zero loss because this
transformation uniformly stretches all score magnitudes and hence also their absolute
differences.
For example, if the difference in scores between a correct class and a nearest incorrect class
was 15,
then multiplying all elements of W by 2 would make the new difference 30.

MACHINE LEARNING – SVM 13

In other words, we wish to encode some preference for a certain set of weights WW over
others to remove this ambiguity. We can do so by extending the loss function with
a regularization penalty R(W)R(W) . The most common regularization penalty is the
squared L2L2-norm that discourages large weights through an elementwise quadratic
penalty over all parameters:

𝑹 𝑾 = σ𝒌σ𝒍𝑾𝒌, 𝒍
𝟐,l

In the expression above, we are summing up all the squared elements of W . Notice that
the regularization function is not a function of the data, it is only based on the weights

MACHINE LEARNING – SVM 14

Including the regularization penalty completes the full Multiclass Support Vector
Machines loss, which is made up of two components: the data loss (which is he average
loss Li over all examples) and the regularization loss. That is, the full Multiclass SVM loss
becomes

𝑳 = (𝟏 ÷ 𝑵)෍

𝒊

𝑳𝒊 + ෍

𝒌

෍

𝒍

𝑾𝟐
𝒌, 𝒍

Data loss regularization loss

Or in the full form:

𝑳 = (𝟏 ÷ 𝑵)෍

𝒊

෍

𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + ∆) + ෍

𝒌

෍

𝒍

𝑾𝟐
𝒌, 𝒍

MACHINE LEARNING – SVM 15

SOFTMAX

03
& SVM vs Softmax

MACHINE LEARNING – SVM 16

It turns out that the SVM is one of two commonly seen classifiers. The other popular
choice is the Softmax classifier, which has a different loss function. If you’ve heard of the
binary Logistic Regression classifier before, the Softmax classifier is its generalization to
multiple classes. Unlike the SVM which treats the outputs f(xi,W) as (uncalibrated and
possibly difficult to interpret) scores for each class, the Softmax classifier gives a
slightly more intuitive output (normalized class probabilities) and also has a probabilistic
interpretation that we will describe shortly. In the Softmax classifier, the function
mapping f(xi;W)=Wxi stays unchanged, but we now interpret these scores as the
unnormalized log probabilities for each class and replace the hinge loss with a cross-
entropy loss that has the form:

MACHINE LEARNING – SVM 17

𝑳𝒊 = 𝒍𝒐𝒈
𝒆𝒇𝒚𝒊

σ𝒋 𝒆
𝒇𝒋

𝒐𝒓 𝑳𝒊 = −𝒇𝒚𝒊 + 𝒍𝒐𝒈෍

𝒋

𝒆𝒇𝒋

Where we are using the notation fj to mean the j-th element of the vector of class scores
f. As before, the full loss for the dataset is the mean of Li over all trainings exmples
together with a regularization term R(W).

The function 𝒇𝒋 𝒛 =
𝒆𝒛

σ𝒌 𝒆
𝒛
𝒌

is called the softmax function: it takes a vector of arbitrary real-

valued scores (in z) and squashes it to a vector of values between zero and one that sum
to one. The full cross-entropy loss that involves the softmax function might look scary if
you’re seeing it for the first time but it is relatively easy to motivate

MACHINE LEARNING – SVM 18

Probabilistic interpretation

𝑷 𝒚𝒊 𝒙𝒊;𝑾) =
𝒆𝒇𝒚𝒊

σ𝒌𝒆
𝒇𝒌

can be interpreted as the (normalized) probability assigned to the correct label yi
given the image xi and parameterized by W . To see this, remember that the
Softmax classifier interprets the scores inside the output vector f as the
unnormalized log probabilities. Exponentiating these quantities therefore gives the
(unnormalized) probabilities, and the division performs the normalization so that
the probabilities sum to one

MACHINE LEARNING – SVM 19

Probabilistic interpretation

In the probabilistic interpretation, we are therefore minimizing the negative log
likelihood of the correct class, which can be interpreted as performing Maximum
Likelihood Estimation (MLE). A nice feature of this view is that we can now also
interpret the regularization term R(W) in the full loss function as coming from a
Gaussian prior over the weight matrix W , where instead of MLE we are
performing the Maximum a posteriori (MAP) estimation. We mention these
interpretations to help your intuitions, but the full details of this derivation are
beyond the scope of this class.

MACHINE LEARNING – SVM 20

Pratical issues

Numeric stability. When you’re writing code for computing the Softmax function

in practice, the intermediate terms efyi and ∑je
fj may be very large due to the

exponentials. Dividing large numbers can be numerically unstable, so it is

important to use a normalization trick. Notice that if we multiply the top and bottom

of the fraction by a constant C and push it into the sum, we get the following

(mathematically equivalent) expression

MACHINE LEARNING – SVM 21

𝑒𝑓𝑦𝑖

σ𝑘 𝑒
𝑓
𝑘

=
𝐶𝑒𝑓𝑦𝑖

𝐶 σ𝑘 𝑒
𝑓
𝑘

=
𝑒𝑓𝑦𝑖+𝑙𝑜𝑔𝐶

σ𝑘 𝑒
𝑓
𝑘
+𝑙𝑜𝑔𝐶

We are free to choose the value of C . This will not change any of the results, but

we can use this value to improve the numerical stability of the computation. A

common choice for C is to set logC=−maxjfj . This simply states that we should shift

the values inside the vector f so that the highest value is zero. In code:

MACHINE LEARNING – SVM 22

SVM vs SOFTMAX

MACHINE LEARNING – SVM 23

Example of the difference between the SVM and Softmax classifiers for one datapoint. In both
cases we compute the same score vector f (e.g. by matrix multiplication in this section). The
difference is in the interpretation of the scores in f: The SVM interprets these as class scores
and its loss function encourages the correct class (class 2, in blue) to have a score higher by a
margin than the other class scores. The Softmax classifier instead interprets the scores as
(unnormalized) log probabilities for each class and then encourages the (normalized) log
probability of the correct class to be high (equivalently the negative of it to be low). The final
loss for this example is 1.58 for the SVM and 1.04 (note this is 1.04 using the natural logarithm,
not base 2 or base 10) for the Softmax classifier, but note that these numbers are not
comparable; They are only meaningful in relation to loss computed within the same classifier
and with the same data.

MACHINE LEARNING – SVM 24

